4 research outputs found

    Team MIT Urban Challenge Technical Report

    Get PDF
    This technical report describes Team MITs approach to theDARPA Urban Challenge. We have developed a novel strategy forusing many inexpensive sensors, mounted on the vehicle periphery,and calibrated with a new cross-­modal calibrationtechnique. Lidar, camera, and radar data streams are processedusing an innovative, locally smooth state representation thatprovides robust perception for real­ time autonomous control. Aresilient planning and control architecture has been developedfor driving in traffic, comprised of an innovative combination ofwell­proven algorithms for mission planning, situationalplanning, situational interpretation, and trajectory control. These innovations are being incorporated in two new roboticvehicles equipped for autonomous driving in urban environments,with extensive testing on a DARPA site visit course. Experimentalresults demonstrate all basic navigation and some basic trafficbehaviors, including unoccupied autonomous driving, lanefollowing using pure-­pursuit control and our local frameperception strategy, obstacle avoidance using kino-­dynamic RRTpath planning, U-­turns, and precedence evaluation amongst othercars at intersections using our situational interpreter. We areworking to extend these approaches to advanced navigation andtraffic scenarios

    A perception-driven autonomous urban vehicle

    No full text
    This paper describes the architecture and implementation of an autonomous passenger vehicle designed to navigate using locally perceived information in preference to potentially inaccurate or incomplete map data. The vehicle architecture was designed to handle the original DARPA Urban Challenge requirements of perceiving and navigating a road network with segments defined by sparse waypoints. The vehicle implementation includes many heterogeneous sensors with significant communications and computation bandwidth to capture and process high-resolution, high-rate sensor data. The output of the comprehensive environmental sensing subsystem is fed into a kino-dynamic motion planning algorithm to generate all vehicleFigure 1: Talos in action at the National Qualifying Event. motion. The requirements of driving in lanes, three-point turns, parking, and maneuvering through obstacle fields are all generated with a unified planner. A key aspect of the planner is its use of closed-loop simulation in a Rapidly-exploring Randomized Trees (RRT) algorithm, which can randomly explore the space while efficiently generating smooth trajectories in a dynamic and uncertain environment
    corecore